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In this paper, we propose deformable deep convolutional image )&
neural networks for generic object detection. This new -

deep learning object detection framework has innovations 3
in multiple aspects. In the proposed new deep architecture, Visusized |
a new deformation constrained pooling (def-pooling) layer e
models the deformation of object parts with geometric con-
straint and penalty. A new pre-training strategy is propibse
to learn feature representations more suitable for the obje
detection task and with good generalization capability. By
changing the net structures, training strategies, addind a
removing some key components in the detection pipeline,
a set of models with large diversity are obtained, which
significantly improves the effectiveness of model averag-
ing. The proposed approach improves the mean averaged
precision obtained by RCNNL{], which was the state-of-
the-art, from31% to 50.3% on the ILSVRC2014 detection
test set. It also outperforms the winner of ILSVRC2014, N o
GooglLeNet, by 6.1%. Detailed component-wise analysis ©

is also provided through extensive experimental evalmatio Figure 1. The motivation of this paper in new pretrainingesok
which provide a global view for people to understand the (a) and jointly learning feature representation and deédnie ob-
deep learning object detection pipeline. ject parts shared by multiple object classes at differemtaseic
levels (b). In (a), a model pretrained on image-level artimids
more robust to size and location change while a model pretdai
on object-level annotation is better in representing dbj&dgth
tight bounding boxes. In (b), when ipod rotates, its circplatern

Object detection is one of the fundamental challenges in moves horizontally at the bottom of the bo”nd'.ng box.‘ Thenef
the circular patterns have smaller penalty moving horaibnbut

computer vision. It has atracted a great _deal of researCI«"nigher penalty moving vertically. The curvature part of tireu-
interest p, 39'_ 11, 19 Intra-class V?‘“a“on In appearance 5 pattern are often at the bottom right positions of theuar
and deformation are among the main challenges of this task 4ttern Best viewed in color

Because of its power in learning features, the convolu-
tional neural network (CNN) is being widely used in re- ing set. Researchers find that supervised pretraining on
cent large-scale object detection and recognition systemdarge-scale image classification data and then finetuning fo
[44, 38, 19, 27]. Since training deep models is a non- the targeting object detection task is a practical solution
convex optimization problem with millions of parameters, [10, 32, 57, 14]. However, we observe that there is still
the choice of a good initial point is a crucial but un- a gap between the pretraining task and the finetuning task
solved problem, especially when deep CNN goes deeperthat makes pretraining less effective. The problem of the
[44, 38, 27]. It is also easy to overfit to a small train- training scheme is the mismatch between pretraining with

Deep model Deformable pattern

1. Introduction
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the image classification task and fine-tuning for the object ing schemes, context modeling, and model averaging. The
detection task. For image classification, the inputis a whol proposed new framework significantly advances the state-
image and the task is to recognize the object within this im- of-the-art for deep learning based generic object detectio
age. Therefore, learned feature representations havstrobu such as the well known RCNNL{] framework. This paper
ness to scale and location change of objects in images. Takalso provides detailed component-wise experimentalt@sul
ing Fig. 1(a) as an example, no matter how large and whereon how our approach can improve the mean Averaged Pre-
a person is in the image, the image should be classified agision (AP) obtained by RCNN1[] from 31.0% to mean
person. However, robustness to object size and location isAP 50.3% step-by-step on the ImageNet Large Scale Visual
not required for object detection. For object detectiom-ca Recognition Challenge 2014 (ILSVRC2014) object detec-

didate regions are cropped and warped before they are usetion task.

as input of the deep model. Therefore, the positive candi-
date regions for the object class person should have their lo 1.
cations aligned and their sizes normalized. On the contrary
the deep model is expected to be sensitive to the change on
position and size in order to accurately localize objects. A
example to illustrate the mismatch is shown in Fig(a).
Because of such mismatch, the image classification task is
not an ideal choice to pretrain the deep model for object de-
tection. Therefore, a new pretraining scheme is proposed to
train the deep model for object detection more effectively.

Part deformation handling is a key factor for the recent
progress in generic object detectionl] 59, 12, 52]. Our
new CNN layer is motivated by three observations. First,
deformable visual patterns are shared by objects of diftere 2.
categories. For example, the circular visual pattern issgsha
by both banjo and ipod as shown in Fitfb). Second, the
regularity on deformation exists for visual patterns at dif
ferent semantic levels. For example, human upper bodies,
human heads, and human mouths are parts at different se-
mantic levels with different deformation properties. Thia
deformable part at a higher level is composed of deformable
parts at a lower level. For example, a human upper body is
composed of a head and other body parts. With these obser3-
vations, we design a new deformation-constrained pooling
(def-pooling) layer to learn the shared visual patterns and
their deformation properties for multiple object classes a
different semantic levels and composition levels.

The performance of deep learning object detection sys-
tems depends significantly on implementation det&l]s [
However, an evaluation of the performance of the recent2'
deep architectures on the common ground for large-scale

The contributions of this paper are as follows:

A new deep learning framework for object detection.
It effectively integrates feature representation leagnin
part deformation learning, context modeling, model av-
eraging, and bounding box location refinement into the
detection system. Detailed component-wise analysis
is provided through extensive experimental evaluation.
This paper is also the first to investigate the influence of
CNN structures for the large-scale object detection task
under the same setting. By changing the configuration
of this framework, multiple detectors with large diver-
sity are generated, which leads to more effective model
averaging.

A new scheme for pretraining the deep CNN model.
We propose to pretrain the deep model on the ImageNet
image classification and localization dataset with 1000-
class object-level annotations instead of with imageitleve
annotations, which are commonly used in existing deep
learning object detectiorlfl, 44]. Then the deep model

is fine-tuned on the ImageNet/PASCAL-VOC object de-
tection dataset with 200/20 classes, which are the target-
ing object classes in the two datasets.

A new deformation constrained pooling (def-pooling)
layer, which enriches the deep model by learning the
deformation of object parts at any information abstrac-
tion levels. The def-pooling layer can be used for replac-
ing the max-pooling layer and learning the deformation
properties of parts.

Related work

Since many objects have non-rigid deformation, the abil-

object detection is missing. As a respect to the devil of jty to handle deformation improves detection performance.

details [,
cent deep models, including AlexNei1], ZF [54], Over-
feat [36], and GoogleNet44] under the same setting for
different pretraining-finetuining schemes.

], this paper compares the performance of re- peformable part-based models were usedin, <] for
handling translational movement of parts. To handle more
complex articulations, size change and rotation of parts
were modeled in12], and mixture of part appearance and

In this paper, we propose a deformable deep convo-articulation types were modeled i, [51]. A dictionary of
lutional neural network for object detection; named as shared deformable patterns was learnedlid.[ In these

DeeplID-Net. In DeeplD-Net, we jointly learn the fea-
ture representation and part deformation for a large num-
ber of object categories.
pects in effectively and efficiently training and aggregati
the deep models, including bounding box rejection, train-

approaches, features are manually designed.

Because of the power on learning feature representation,

We also investigate many as-deep models have been widely used for object recognition,
detection and other vision tasksd 54, 19, 37, 61, 17, 22,
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existing deep CNN models, max pooling and average pool- Box DeeplD-Net
ing are useful in handling deformation but cannot learn the & % &rc"LP [CIECE N
deformation penalty and geometric models of object parts.* H . "ﬂ | def-pooiing SIS AR

Remaining
bounding boxes

Proposed

The deformation layer was first proposed &¥] for pedes- ,
bounding boxes

trian detection. In this paper, we extend it to general dbjec
detection on ImageNet. I}, the deformation layer was

constrained to be placed after the last convolutional layer ey ¢ S S
while in this work the def-pooling layer can be placed after poc- o Bf:g:’;ggf:*“h | it 2

all the convolutional layers to capture geometric deforma- Figure 2. Overview of our approach. Find detailed desaipti

tion at all the information abstraction levels. %], itwas  the text of Sectiors. 1. Texts in red highlight the steps that are not
assumed that a pedestrian only has one instance of a bodyresent in RCNNT4].

Image
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part, so each part filter only has one optimal response in a
detection window. In this work, it is assumed that an object
has multiple instances of a part (e.g. a car has manywheels)?'
so each partfilter is allowed to have multiple response peaks
in a detection window. Moreover, we allow multiple object
categories to share deformable parts and jointly learn ther-
with a single network. This new model is more suitable for
general object detection.

Context gains attentions in object detection. The context
information investigated in literature includes regions-s
rounding objectsH, 8, 13, object-scene interactiod[20],
and the presence, location, orientation and size reldtipns
among objects?, 48, 49, 7, 31, 13, 40, 9, 53, 8, 50, 30, 6,

, 45]. In this paper, we use whole-image classification
scores over a large number of classes from a deep model a&
global contextual information to refine detection scores.

Besides feature learning, deformation modeling, and
context modeling, there are also other important compo-
nents in the object detection pipeline, such as pretraining
[14], network structuresd6, 54, 21], refinement of bound-
ing box locations 4], and model averaging-ft, 21, 19.
While these components were studies individually in differ
ent works, we integrate them into a complete pipeline and

take a global view of them with component-wise analysisé)a)

under the same experimental setting. It is an important ste
to understand and advance deep learning based object de-
tection.

(b)

3. Method
3.1. Overview of our approach

An overview of our proposed approach is shown in Fig.
2. We take the ImageNet object detection task as an ex-
ample. The ImageNet image classification and localization
dataset with 1,000 classes is chosen to pretrain the deep
model. Its object detection dataset has 200 object classes.
In the experimental section, the approach is also applied t¢c)
the PASCAL VOC. The pretraining data keeps the same,
while the detection dataset only has 20 object classes. The
steps of our approach are summarized as follows.
1. Selective search proposed ##] is used to propose can-

didate bounding boxes.

An existing detector, RCNNL}] in our experiment, is
used to reject bounding boxes that are most likely to be
background.

An image region in a bounding box is cropped and
fed into the DeeplD-Net to obtain 200 detection scores.
Each detection score measures the confidence on the
cropped image containing one specific object class. De-
tails are given in Sectiof.2.

4. The 1000-class whole-image classification scores of a

deep model are used as contextual information to re-
fine the detection scores of each candidate bounding box.
Details are given in SectioB.6.

Average of multiple deep model outputs is used to im-
prove the detection accuracy. Details are given in Sec-
tion 3.7.

6. Bounding box regression proposed in RCNK][is used

to reduce localization errors.

3.2. Architecture of DeepID-Net

DeeplD-Net in Fig.3 has three parts:

The baseline deep model. The ZF model proposed in
[54] is used as the default baseline deep model when itis
not specified.

Branches with def-pooling layers. The input of these lay
ers is the conv5, the last convolutional layer of the base-
line model. The output of conv5 is convolved with part
filters of variable sizes and the proposed def-pooling lay-
ers in SectiorB.4 are used to learn the deformation con-
straint of these part filters. Parts (a)-(b) output 200<las
object detection scores. For the cropped image region
that contains a horse as shown in Figa), its ideal out-

put should have a high score for the object class horse
but low scores for other classes.

The deep model (ZF) to obtain image classification
scores of 1000 classes. Its input is the whole image, as
shown in Fig.3(c). The image classification scores are
used as contextual information to refine the classification
scores of bounding boxes. Detail are given in Section
3.6



a) Existing deefor:\:)sdd (ZFf)é - 2. Fine-tune the deep model for the 200-class object de-
. Refined tection task, i.e. using object-level annotations of 200

HD——D 200-class  200-class classes from ImageNet Det train and;v@lalidation set

| - 1) data. Use the parameters in Step (1) as initialization.

Compared with the training scheme of RCNN, experimental

results show that the proposed scheme improves mean AP

by 4.5% on ImageNet Det valvalidation set 2). If only

the 200 targeting classes (instead of 1,000 classes) frem th

ImageNet Cls-Loc train data are selected for pre-training i

Step (1), the mean AP on ImageNet Detv@dops by 5.7%.

1)

Candidate convé| def6 conv7,
region =

28 1

convés defé3 conv7;

128 128
(b) Layers with def-pooling layer

3.4. Def-pooling layer

In the deformable part based model (DPM}] for ob-

. ject detection, part templates learned on HOG features are
‘ ,mage‘ ) 1000-class considered as part filters and they are convolved with input
%(c) Deep model (clarifai-fast) for 1000-class image classification seeres images' Slmllarly, we can consider the inPUt of a convolu-

‘ tional layer in CNN as features and consider the filters of
that convolutional layer as part filters. And the outputs of
the convolutional layer are part detection maps.

Similar to max-pooling and average-pooling, the input
of a def-pooling layer is the output of a convolutional layer
The convolutional layer producés part detection maps of
sizeW x H. DenoteM.. as thecth part detection map. De-
3.3. New pretraining strategy note the(i, j)th element oM, by m&9 . The def- pooling

layer takes a small block with centéx; - z, s, - y) and size

The widely used training scheme in deep learning based(QR +1) x (2R + 1) from theM,, and produce the element

Figure 3. Architecture of DeeplD-Net with three parts: (as&-
line deep model, which is ZF5f] in our best-performing single-
model detector; (b) layers of part filters with variable siaed def-
pooling layers; (c) deep model to obtain 1000-class imagesi-
cation scores. The 1000-class image classification scoeassad
to refine the 200-class bounding box classification scores.

object detection4, 57, 44] including RCNN is denoted by  of the output as follows:

Scheme 0 and described as follows:

1. Pretrain deep models by using the image classification (=¥ — max mSedy Z“c ndos vy
task, i.e. using image-level annotations from the Ima- 0w Sy €{—R, R ot @
geNet image classification and localization training data. wherez;, 5, = (51, 2+ Oy Sy - Y+ 6y).

2. Fine-tune deep models for the object detection task, i.e.
using object-level annotations from the object detection
training data. The parameters learnedin Step (1) are used”
as initialization.

The deep model structures at the pretraining and fine-tuning

stages are only different in the last fully connected lager f

predicting labels], 000 classes for the ImageNet classifica- -,

tion task vs.200 classes for the ImageNet detection task). deformed pczssrlgorz(;my.

Except for the last fully connected layers for classificatio  ® “en and ‘f 9 are parameters leamed by BP.

the parameters learned at the pretraining stage are girectl  >_,,—; Gc,ndcin * is the penalty of placing the part from

used as initial values for the fine-tuning stage. the assumed anchor positi¢a, - z,s, - y) to the de-
We propose to pretrain the deep model on a large auxil-  formed positionz;, s, .

iary object detection training data instead of the imags-cla ~ The def-pooling layer can be better understood through

sification data. Since the ImageNet Cls-Loc data providesthe following examples.

object-level bounding boxes for 1000 classes, more diverse Example 1. If N = 1, a, = 1, df“"sy = 0 for

in content than the ImageNet Det data with 200 classes, wels, |, |6, < k anddfr=5y = oo for |0,],|0,| > k, then this

use the image regions cropped by these bounding boxes t@orresponds to max-pooling with kernel sike It shows

pretain the baseline deep model in F&fa). The proposed  that the max-pooling layer is a special case of the def-
pretraining strategy is denoted as Scheme 1 and bridges th@ooling layer. Penalty becomes very large when deforma-
image- vs. object-level annotation gap in RCNN. tion reaches certain range. Since the use of different kerne

1. Pretrain the deep model with object-level annotations of sizes in max-pooling corresponds to different maps of de-
1,000 classes from ImageNet Cls-Loc train data. formation penalty that can be learned by BP, def-pooling

o b\ s the (z,y)th element of the output of the def-
pooling layer. FoiM,. of sizeW x H, the subsampled
output has sizé’ x Sﬁ Therefore, multiple max re-
sponses are allowed for each part filer.

m.’**" is the visual score of placing the¢h part at the
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Figure 4. Def-pooling layer. The part detection map and the d
formation penalty are summed up. Block-wise max pooling is
then performed on the summed map to obtain the oot size

% x £ (3 x 1in this example).

provides the ability to learn the map that implicitly decde
the kernel size for max-pooling.

Example 2. The deformation layer inZ9 is a spe-
cial case of the def-pooling layer by enforcing that s,
in (1) covers all the locations in copv; ; and only one
output with a pre-defined location is allowed for the def-
pooling layer (i.e. R = oo, s, = W, ands, = H).
The proof can be found in Appendix 1. To implement
guadratic deformation penalty used inhl], we can pre-
define{d2 " Ynei.2.5.4 = {02, 0,, (32)2, (5,)?} and learn
parameters,,. As shown in Appendix A, the def-pooling
layer under this setting can represent deformation canstra
in the deformable part based model (DPM)]JJand the DP-
DPM [16].

Example 3.1f N = 1 anda,, = 1, thendf”";y is the
deformation parameter/penalty of moving a part from the
assumed locatiofs, - z, s, - y) by (45,d,). If the partis
not allowed to move, we hawé® = 0 andd}""” = oo
for (64,0,) # (0,0). If the part has penalty 1 when it is
not at the assumed locatids, - z, s, - y), then we have
d?° = 0 andd}"" = 1 for (5,,5,) # (0,0). It allows to
assign different penalty to displacement in different clire
tions. If the part has penalty 2 moving leftward and penalty
1 moving rightward, then we ha\n‘éls’”’% =1foré, <0
anddf“’éy = 2 for §, > 0. Fig. 5 shows some learned
deformation parameter§m o

Take Example 2 as an example for BP learning,, is
the parameter in this layer anti is pre-defined constant.
o™ /9a,,, = —dSz® for the position(s,,d,) with
maximum value in{). The gradients for the parameters in
the layers before the def-pooling layer are back-propagate
like max-pooling layer.

In our implementation, there are no fully connected lay-
ers after convy, 2,3 in Fig. 3 and Example 3 is used for
def-pooling.

3.4.1 Analysis

A visual pattern has different spatial distributions irfelif
ent object classes. For example, traffic lights and ipods hav

&
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Figure 5. The learned deformation penalty for differentiaispat-
terns. The penalties in map 1 are low at diagonal positioe T
penalties in map 2 and 3 are low at vertical and horizontad-oc
tions separately. The penalties in map 4 are high at the rbotto
right corner and low at the upper left corner.
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Figure 6. Repeated visual patterns in multiple object elass

geometric constraints on the circular visual pattern in Fig

6. The weights connecting the convolutional layers cqnv7

- convis in Fig. 3 and classification scores are determined

by the spatial distributions of visual patterns for diffietre

classes. For example, the car class will have large positive
weights in the bottom region but negative weights in the
upper region for the circular pattern. On the other hand,
the traffic light class will have positive weights in the uppe
region for the circular pattern.

A single output of the convolutional layer convin Fig.

3 is from multiple part scores in def6é The relationship

between parts of the same layer is modeled by conv7
The def-pooling layer has the following advantages.

1. It can replace any convolutional layer, and learn defor-
mation of parts with different sizes and semantic mean-
ings. For example, at a higher level, visual patterns can
be large parts, e.g. human upper bodies, and the def-
pooling layer can capture the deformation constraint of
human upper parts. At a middle level, the visual pat-
terns can be smaller parts, e.g. heads. At the lowest
level, the visual patterns can be very small, e.g. mouths.
A human upper part is composed of a deformable head
and other parts. The human head is composed of a de-
formable mouth and other parts. Object parts at differ-
ent semantic abstraction levels with different deforma-
tion constraints are captured by def-pooling layers at dif-
ferent levels. The composition of object parts is naturally
implemented by CNN with hierarchical layers.

2. The def-pooling layer allows for multiple deformable
parts with the same visual cue, i.e. multiple response
peaks are allowed for one filter. This design is from our
observation that an object may have multiple object parts
with the same visual pattern. For example, three light



bulbs co-exist in a traffic light in Figd. . P
3. As shown in Fig3, the def-pooling layer is a shared rep- : W Volleyball < 1 pay |7 1
resentation for multiple classes and therefore the learned "Zl et P

visual patterns in the def-pooling layer can be shared — bete SN
among these classes. As examples in Bighe learned f:;hi"g ,-@\
circular visual patterns are shared as different object "
parts in traffic lights, cars, and ipods. Figure 7. The SVM weights on image classification scoresdia) f
The layers proposed i}, 16] does not have these advan- the object detection class volleyball (b).
tages, because they can only be placed after the final convo- ] ) ] _
lutional layer, assume one instance per object part, ansl doe 29€S at different locations or using different learned jpara

not share visual patterns among classes. eters. In our model averaging scheme, we learn models un-
der multiple settings. The settings of the models used for
3.5. Fine-tuning the deep model with hinge-loss model averaging are shown ifi][ They are different in net

structures, pretraining schemes, loss functions for tiep de
softmax loss in the deep model after fine-tuning. Then in a model_trammg, a_ddlr_lg def-pooling layer or not, and _dom_g
bounding box rejection or not. Models generated in this

separate step, the learned feature representation istinaut : . :
. : o . way have higher diversity and are complementary to each
linear binary SVM classifier for detection of each class. In o . .

other in improving the detection results.

our approach, the softmax loss is replaced by the 200 binary .

hinge losses when fine-tuning the deep model. Thus the The 4 models are automatically selected by greedy
deep model fine-tuning and SVM learning steps in RCNN search on ImageNethDet \éalgnd thfe mAP of model ?\VI
are merged into one step. The extra training time requiredehrag'ng 'Sio'h?’%bon t e tlest 3%}40 ILSVRC2014, while
for extracting features+ 2.4 days with one Titan GPU) is the mAP of the best single model48.2%.

saved.

In RCNN, feature representation is first learned with the

4. Experimental results

3.6. Contextual modelin
g Overall result on PASCAL VOor the VOC-2007 de-

‘The deep model learned for the image classification tasktection dataset, we follow the approach infJ for splitting
(Fig. 3(c)) takes scene information into consideration while the training and testing data. Talllshows the experimen-

the deep model for object detection (Fi§(a) and (b)) fo-  tal results on VOC-2007 testing data, which include ap-
cuses on local bounding boxes. The 1000-class image clasproaches using hand-crafted featurés, [33, 47, 46, 11],

sification scores are used as contextual features, and condeep CNN featuresi, 1], and CNN features with defor-
catenated with the 200-class object detection scoresito for mation learning [6]. Since all the state-of-the-art works
a 1200 dimensional feature vector, based on which a |inearreported sing|e_m0de| results on this dataset, we a|sqtrepo
SVM is learned to refine the 200-class detection scores.  the single-model result only. Our model was pretrained on

Take object detection for class volleyball as an exam- bounding box annotation, with deformation, without con-
ple in Figure7. If only considering local regions cropped text, and with ZF as the baseline net. Ours outperforms
from bounding boxes, volleyballs are easy to be confusedRCNN [14] and SPP [ 9] by about 5% in mAP. RCNN, SPN
with bathing caps and golf balls. In this case, the contex- and our model are all pre-trained on the ImageNet Cls-Loc
tual information from the whole-image classification s®re  training data and fine-tuned on the VOC-2007 training data.
is helpful, since bathing caps appear in scenes of beach and Experimental Setup on ImageNdthe ImageNet Large
swimming pools, golf balls appear in grass fields, and vol- scale Visual Recognition Challenge (ILSVRC) 2024
leyballs appear in stadiums. The whole images of the threecontains two different datasets: 1) the classification and
classes can be better distinguished because of the globabcalization (Cls-Loc) dataset and 2) the detection (Det)
scenery information. Fig7 plots the learned linear SYM  dataset. The training data of Cls-Loc contains 1.2 million
weights on the 1000-class image classification scores. It iSimages with labels of, 000 categories. It is used to pre-
observed that image classes bathing cap and golf ball suptrain deep models. The same split of train and validation
press the existence of volleyball in the refinement of de- data from the Cls-Loc is used for image-level annotation
tection scores with negative weights, while the image classand object-level annotation pretraining. The Det contains
volleyball enhances the detection score of volleyball. 200 object categories and is split into three subsets,, train
validation (val), and test data. We follow RCNN4] in
splitting the val data into valand va}. Val; is used to

Model averaging has been widely used in object detec-train models, val is used to evaluate separate components,
tion. In existing works §4, 21, 19], the same deep archi- and test is used to evaluating the overall performance. The
tecture was used. Models were different in cropping im- val;/val, splitis the same as that in4].

3.7. Combining models with high diversity



Table 1. Detection mAP%) on ILSVRC?2014 for top ranked approaches with single mosigl) @nd average model (avg).

approach Flair{6] RCNN[14] Berkeley Vision UvA-Euvision Deeplnsight GoogLeNéf]|ours
ImageNet val (avg) n/a n/a n/a n/a 42 445 |50.7
ImageNetval (sgl) n/a 31.0 33.4 n/a 40.1 38.8 |48.2
ImageNet test (avg) 22.6 n/a n/a n/a 40.5 43.9 |50.3
ImageNet test (sgl) n/a 314 345 35.4 40.2 38.0 (47.9

Table 2. Detection mAP%) on PASCAL VOC-2007 test set.
HOG-DPM [15] HSC-DPM [33] Regionlet i7] Flair [46] DP-DPM [16] RCNN[14] SPP [L9]|ours (single model)
33.7 34.3 41.7 33.3 45.2 58.5 59.2 64.1

Table 3. Study of bounding box (bbox) rejection and baseleep
model on ILSVRC2014 valwithout context or def-pooling.
bbox rejection? n y y y y

ical for future research, but also improves detection accu-
racy. Both with bounding box rejection, ZE4] performs
deep model  A-net A-net Z-net O-net G-net better tha}n AlexNet 1], with 0.9% mAP improvement.
mAP (%) 599 309 318 366 378 Overfeat B6] performs better than ZF, with 4.8% mAP im-
meadian AP%) 28.9 29.4 305 36.7 37 provement. GoogleNet!f] performs better than Overfeat,
with 1.2% mAP improvement.

Table 5. Investigation on baseline net structures with pleping
on ILSVRC2014 val. Use pretraining scheme 1 but no context.
net structure Z-net D-Def(Z) O-net D-Def(O) G-net D-Def(G) 4.1.2 Investigation on different pretraining schemes
mAP %) 36.0 385 39.1 414 404 427 and baseline net structures
meadian) 349 374 379 419 393 423

There are two different sets of data used for pretraining the
Overall result on ImageNet DeRCNN [1] is used as baseline deep model: 1) the ImageNet CI§ train data wi?h
the state-of-the-art for comparison. The source code pro-1000 classes and 2) the ImageNet Cls train data_l data with
vided by the authors was used to and we were able to re—the same 200 c_Iasses as De?' There are two different an-
peat their results. Tablé summarizes the results from notf'mon I_eve!s, image and object. TaBlehow the .reSUItS
ILSVRC2014 object detection challenge. It includes the for investigation on image class r_1umber, annotation levels
best results on the test data submitted to ILSVRC2014 fromand net strucFures. Whef‘ produ_cmg these resu]ts, other new
GoogLeNet 4, Deeplnsignt, UvA-Euvision, and Berke- components introduced in Sectidn#-3.6are not included.

For pretraining, we drop the learning rate by 10 when the

ley Vision, which ranked top among all the teams partici- lassificat ¢ validation dat h lat
pating in the challenge. In terms of single-model and model classilication accuracy ot valdation data reaches piateau
until no improvment is found on the validation data. For

averaging performance, we achieve the highest mAP. It out-

: fine-tuning, we use the same initial learning rate (0.001)
f th f ILSVRC2014, GoogleNet, by 6.1% . i X
Eﬁrrr(]);\rgs e winhero OOgieTiet, by ° and the same number of iterations (20,000) for dropping the

learning rate by 10 for all net structures, which is the same
4.1. Ablation study setting in RCNN [.4].
_ _ ) Using object-level annotation, pretraining on 1000
The ImageNet Det is used for ablation study. Bounding ¢jasses performs better than pretraining on 200 classes by
box regression is not used if not specified. 5.7% mAP. Using the same 1000 classes, pretraining on
object-level-annotation performs better than pretrajron
4.1.1 Baseline deep model and bounding box rejection ~ image-level annotation by 4.4% mAP for A-net and 4.2%
o ] ] . for Z-net. This experiment shows that object-level annota-
As shown in Fig. 3, a baseline deep model is used in our o is better than image-level annotation in pretrainiagy
DeeplID-Net. Tabl& shows the results for differentbaseline  ,ogel. Pretraining with more classes improves the general-

deep models and bounding box rejection choices. AlexNetization capability of the learned feature representations
in [21] is denoted as A-net, ZF irbf] is denoted as Z-net,

and overfeat in J6] is denoted as O-net. Except for the 413
two components investigated in Taldeother components o
are the same as RCNN, while the new training schemes andifferent deep model structures are investigated andtsesul
the new components introduced in Sectiba are not in- are shown in Tabl& using the new pretraining scheme in
cluded. The configuration in the second column of Table Section3.3. Our DeeplD-Net that uses def-pooling layers
3 is the same as RCNN (mean mAPB.9%). Based on  as shown in Fig3is denoted as D-Def. Using the Z-net as
RCNN, applying bounding box rejection improves mAP by baseline deep moel, the DeeplD-Net that uses def-pooling
1%. Therefore, bounding box rejection not only saves the layer in Fig. 3 improves mAP by 2.5%. Def-pooling layer
time for training and validating new models, which is crit- improves mAP by 2.3% for both O-net and G-net. This

Investigation on def-pooling layer



Table 4. Ablation study of the two pretraining schemes inti8a@.3 for different net structures on ILSVRC2014 yalScheme 0 only
uses image-level annotation for pretraining. Scheme 1 aisiest-level annotation for pretraining. Context is notdis

net structure

class number 1000 1000 1000 1000
bbox rejection n n y y
pretrain scheme 0 1 1 0

A-net A-net A-net Z-net Z-net Z-net Z-net Q-@enet G-net G-net

200 1000 1000 1000 1000 1000 1

n n y y y y y

1 1 1 0 1 0 1

mAP (%)

299 343 349 318 299 356 36.0 36.6 39.1 37.8 404

meadian AP%) 28.9 33.4 34.4 30.5 29.7 340 349 36.7 37.9 37.0 39.3

Table 6. Ablation study of the overall pipeline for single aeb on ILSVRC2014 val2. It shows the mean AP after adding dagh

component step-by-step.

detection pipeline  RCNN +bbox A-net Z-net O-net image tobb@dgbox +Def +multi-scale +context +bbox
rejection to Z-net to O-net to G-net  pretrain  candidate ingol pretrain regression
mAP (%) 29.9 30.9 31.8 36.6 37.8 40.4 42.7 44.9 47.3 47.8 48.2
meadian AP %) 289 294 305 36.7 37.0 39.3 42.3 45.2 47.8 48.1 49.8
mMAP improvement%) +1 +0.9 +4.8 +1.2 +2.6 +2.3 +2.2 +2.4 +0.5 +0.4

experiment shows the effectiveness of the def-poolinglaye (1) as follows:

for generic object detection.

4.1.4 Investigation on the overall pipeline

Table 6 summarizes how performance gets improved by

ﬁl(i’j) :m(i,j) _ aldgi’j) _ anéi’j) _ agdéi’j)— a4dy’j)—a5,
A = (i =), dy =~ b2)? S =i~ b,

5D =5~ b, as = 0/ (o) + (o) @

adding each component step-by-step into our pipeline. In this caseq:, as, a3 anday are parameters to be learned

RCNN has mAR9.9%. With bounding box rejection, mAP
is improved by aboufi%, denoted by+1% in Table 6.

Based on that, changing A-net to Z-net improves mAP by

0.9%. Changing Z-net to O-net improves mAP By8%.
O-net to G-net improves mAP hy2%. Replacing image-
level annotation by object-level annotation in pretrainin
mMAP is increased b®.6%. By combining candidates from
selective search and edgeboxgs][ mAP is increased by
2.3%. The def-pooling layer further improves mAP by
2.2%. Pretraining the object-level annotation with multiple
scales {] improves mAP by2.2%. After adding the con-
textual information from image classification scores, mAP
is increased by.5%. Bounding box regression improves
mAP by 0.4%. With model averaging, the final result is
50.7%.

5. Appedix A: Relationship between the defor-
mation layer and the DPM

The quadratic deformation constraint inl] can be rep-
resented as follows:
4y

7200 — i God) _ e (i— by 423V o (i—b
m m a1(i—b1+ a1) az(j 2+2a2

3 (2)
wherem(9) is the (i, j)th element of the part detection
mapM, (b1,bs) is the predefined anchor location of the
pth part. They are adjusted lay /2a; anday/2a2, which
are automatically learned:; anda, (2) decide the defor-
mation cost. There is no deformation costif = a> = 0.
Parts are not allowed to movedfi = as = oo. (b1, b2)
and (22, 24 jointly decide the center of the part. The

2(11 ? 20.2

guadratic constraint in Eq2) can be represented using Eq.

anddﬁf”) forn = 1,2, 3,4 are predefineds; is the same in
all locations and need not be learned. The final output is:
b = max m(i’j),

(4.9) )

wherern ("7 is the(i, j)th element of the matriM in (2).

6. Conclusion

This paper proposes a deep learning based object de-
tection pipeline, which integrates the key components of
bounding box reject, pretraining, deformation handling,
context modeling, bounding box regression and model av-
eraging. It significantly advances the state-of-the-amtfr
mMAP 31.0% (obtained by RCNN) t60.3% on the ImgeNet
object task. Its single model and model averaging perfor-
mances are the best in ILSVC2014. A global view and
detailed component-wise experimental analysis under the
same setting are provided to help researchers undersend th
pipeline of deep learning based object detection.

We enrich the deep model by introducing the def-pooling
layer, which has great flexibility to incorporate various de
formation handling approaches and deep architectures. Mo-
tivated by our insights on how to learn feature representa-
tions more suitable for the object detection task and with
good generalization capability, a pretraining schemeas pr
posed. By changing the configurations of the proposed de-
tection pipeline, multiple detectors with large diversite
obtained, which leads to more effective model averaging.
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